
Update on the adoption of
synchronous languages at gh.st

Kai Engelhardt

views expressed, if any, are mine, not Ghost’s

1

https://www.gh.st


What is gh.st?

Now: Build hardware and train AI to drive a car in good
conditions on a Californian highway.

Then: Bootstrap by recording more driving so the AI can
learn to drive in more places and conditions.

2



Prototype

pilot SVI BVI
brake
act.front cams

ghost CAN

car CAN

3



Pilot Board

4



SW stack overview
Driving decision computation is described in our own
language, GFL.
GFL has two sets of operators
I streaming operators (functional data flow with bounded

history)
I neural network operators (convolution, ReLU, …)

Now: GFL is realised as an interactive system; it’s a Scala
EDSL, translates to byte code that runs in a JVM on
Android/linux; NN ops are translated to OpenCL so they
can run on GPUs

Then: re-interpret GFL as reactive system; translate to
Lustre (for streaming ops) + FFI (for NN ops); run on
(almost) bare metal; non-critical bits remain in Scala-land

5



MainGoal of DemoValidation

Have SVI, BVI, and brake actuator as a simple and reliable
insulation layer between
untrusted NNs, GFL, Android, linux, 845s

trusted car, safety driver

6



Demo Safety

Safe disengagement: once disengaged, the Ghost Camry
behaves like a Camry

Instantaneous disengagement: any trouble leads to
immediate disengagement
(where “trouble” is detectable for the SVI)

No spontaneous engagement: only when all planets are
aligned…

Don’t write car CAN: at most read the car CAN
Pilot doesn’t talk to BVI: only SVI instructs BVI
SVI vets driving decisions: carry out only timely driving

decisions that fit the current envelope
Altogether: about as safe aswithout ghost

7



Techniques for DemoValidation

E-Stop& brake act. & SVI car CAN µC: EE (and ME) so ghost
surgery doesn’t corrupt the car

SVI &BVI& pilot CAN µCs: Testing, PBT, model checking for
Lustre and C

deployment: pilot’s check list incl. manual validation of
firmware versions on demo car

8



What about the NNs?

The NNs can be rand() without jeopardising demo safety.

A successful demo needs ghost to drive for a while.
And that’s what we did on the 280!

9



Experiment: Lustre for µC
We rewrote core vehicle interface functionality in Lustre
(brake, steering, accelerator)

Now: µC code for FSMs, calls C to drive µC internals
30 .lus files, 2.8k loc, 94 properties
26k loc .[ch] (incl. µC boilerplate)
I language dialect differences bridged with in-house

Lustre babelfish (tril)
I compiled with heptagon (after .lus tril−−−→.ept)
I 80 properties verified with kind2

Then:
I move to
I add theorem-prover escape hatch to state and prove

properties beyond kind2
I ASIL-D-certified µC where redundancy is inopportune

10



Example
-- calculate delta since last clock
t_last = 0 -> pre t_now;
t_delta = if t_now > t_last then t_now - t_last

else t_now + (INT_MAX - t_last);
t_good = t_delta >= T_MIN_US and t_delta <= T_MAX_US;

-- input voltage is good if its DC value is in range
v_clamp = clamp(0, EMA_RANGE, v_input);
v_filt = ema50(v_clamp);
v_good = v_filt >= V_INPUT_MIN_DC and v_filt <= V_INPUT_MAX_DC

and v_input >= V_INPUT_MIN;

fault = if not lastn(adc_clk, GOOD_CLOCKS_MIN) then DISENG_SYS_ADC
else if not lastn(v_good, GOOD_CLOCKS_MIN) then DISENG_SYS_VIN
else if not lastn(t_good, GOOD_CLOCKS_MIN) then DISENG_SYS_OVERRUN
else DISENG_NONE;

--%PROPERTY (t_now - t_last) >= 9000 and (t_now - t_last) <= 11000 => t_good;
--%PROPERTY t_now > t_last and t_now - t_last < 9000 => not t_good;
--%PROPERTY not (adc_clk or v_good or t_good) => faulty(fault);

11



Results
I Steering interface (.lus) featured in a driving demo on

highway 280 in CA. Braking and acceleration were not
demoed on public roads yet.

I Engineers working on the µCs, even those with zero
previous exposure to FM, took to writing .lus and simple
properties.

I The µCs work as expected!
We found one bug survived in our Lustre code:

Bug: A race between sampling different analog pins and
executing the lustre tick function; analog pins
containing redundant information were sampled at
different times, leading to spurious faults due to the
redundant pins not agreeing

I kind2 is somewhat weak when it comes to numerics and
automata; working around that, we used it quite
successfully

12



Experiment: SCCharts for FSMs

Now: We rewrote pilot FSMs in SCCharts
(HMI, coordinator, and driver FSMs which run on all
SoCs)
I exported to Java
I linked to Scala via JNI
I runs on a JVM/Android/linux

Then:
I run on hypervisor/HAL instead of JVM
I rewrite or export to Lustre to use

13



Example: Coordinator FSM

WaitForServices

WaitForPost

EventSystemOperationalAlive

SwitchToUpdates

EventUpdateAvailable

ShutdownEngines

EventShutdownRequested

EventUpdateAvailable

EventShutdownRequested

BringupAutopilot

EventPostPassed

PostFailed

EventPostFailed

EnginesStopped

EventNoDeployedEnginesAlive

Ready

EventDriverStatus(ReadyToRecord)

EventUpdateAvailable

EventUpdateAvailable EventTrigger

EventShutdownRequested

SystemUnhealthy

EventSystemOpsFatalFailure DriverRecording

EventOnHighway, RTD=false

EventShutdownRequested

EventSystemOperationalHealthy

EventOffHighway

EventSystemOpsFatalFailure

EventRotateLid
EventDriverStatus(ReadyToDrive,

RTD==false), RTD=true

DriverEngaging

EventDriverStatus(ReadyToDrive, GviStateReady, RTD==true) EventOffHighway, RTD=false
5 seconds in

DriverEngaging, RTD=false

Driving

EventDriverStatus(Driving)

DriverHandover

EventDriverGviDisengage

EventSystemOpsFatalFailureEventDriverGviDisengage EventDriverStatus(!Driving) EventOffHighway

EventDriverGviOverride, RTD=false

EventStartup

part of the coordinator, in .dot derived from Akka/Scala

14



Example: Coordinator FSM

same part, redone as SCChart

15



Example: Coordinator FSM

same, cleaned up and repaired

16



Results

I The driver FSM (.sctx) featured in the same driving
demo on highway 280 in CA.

I Engineer working on the driver FSMs took to writing
.sctx.

I Simulating individual FSMs in Kieler helped
communicating, e.g. concerns about corner cases.

I Eliminating scheduling conflicts can be hard.
I We found logic bugs, missing transitions, and a

deadlock.

17



Misc. FM

I Why3 to model some of the OpenCL tensor operators
used by GFL; WhyML → OpenCL extractor

I cbmc to validate power-µC functionality
I ghedrc (in-house dev.) reads a schematic in Allegro

netlist format and performs structural and semantic
electrical checks

18


	Recall from Synchron'19
	HW architecture
	SW architecture
	Experiments

